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Abstract
The aim of this study is to develop an efficient hybrid machine learning (ML) model, which combines the genetic algorithm 
(GA) and artificial neural network (ANN) for rapidly calculating the load-bearing capacity (LBC) reinforced concrete driven 
piles. An extensive database including 470 static tests is collected to train the hybrid ML model. The predicted results of 
the GA–ANN model in this study are compared to those of the pure ANN model. Statistical indicators containing the coef-
ficient of determination ( R2 ), root-mean-squared error ( RMSE ), and a20 − index are determined to assess the prediction 
performance of the ML models. The comparison emphasizes that the GA–ANN model predicts the LBC of the pile accurately 
with a very high R2 value of 0.99 and small RMSE of 49 kN. Furthermore, the effects of input variables on the predicted 
LBC are evaluated. Finally, to apply the ML model, a graphical user interface tool is developed for simplifying the LBC of 
reinforced concrete driven piles.

Keywords Reinforced concrete driven piles · Load-bearing capacity · GA–ANN · GUI tool

Introduction

Reinforced concrete (RC)-driven piles play a crucial role 
in load-bearing capacity of deep foundations of large civil 
engineering structures. Calculating the axial load-bearing 
capacity (LBC) of pile is an important step in designing deep 
foundations. Currently, there are many design code provi-
sions and guidelines for estimating the capacity of piles. It 
is required to obtain soil mechanic properties before using 
equations in design standards. Some typical field methods 
for ground testing have been employed in construction 
projects such as static probing test, dynamic probing test, 
standard penetration test (SPT), cone penetration test, and 
field vane test. Additionally, engineers uses a combination 

of several field tests and laboratory tests. However, this 
approach is always time-consuming and costly (Kozłowski 
& Niemczynski, 2016; Pham & Tran, 2022).

So far, some studies have been conducted on applications 
of machine learning (ML) models for estimating LBC of 
RC driven piles. Pham et al. (2020) determined the bear-
ing capacity of piles using evolution algorithms and deep 
learning neural networks. For that, they used 472 results of 
static load tests, and then concluded that performance of the 
ML models was accurate with goodness of fit ( R2 ) values 
of 0.9 and root-mean-squared error ( RMSE ) larger than 83 
kN. Using the same data samples, Pham and Tran (2022) 
developed hybrid models with a combination of random 
forest and optimization algorithms. They obtained a high 
accuracy with R2 of 0.987. Recently, Nguyen et al. (2023b) 
constructed an extreme gradient boosting model and then 
optimized by whale optimization technique for estimating 
LBC of RC piles. A higher R2 value of 0.96 and small RMSE 
of 64 kN were achieved. However, it is a challenge to apply 
those ML models since a practical tool was not developed 
for engineering design purposes.

Machine learning (ML) techniques have been employ-
ing popularly in civil and structural engineering (Kaveh, 
2014; Kaveh & Bondarabady, 2004; Kaveh & Servati, 2001; 
Kaveh et al., 2008; Nguyen et al., 2022; Tran & Nguyen, 
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2022). It can be found that artificial neural network (ANN) 
is the most common ML models applying for estimating 
responses of RC and steel structures (Ahmed et al., 2019; 
Kaveh & Khavaninzadeh, 2023; Mai et al., 2022; Nguyen 
et al., 2021a, b, c, 2023a; Rönnholm et al., 2005; Selvan 
et al., 2018; Tran & Kim, 2020; Tran et al., 2022; Vakh-
shouri & Nejadi, 2018; Yang et  al., 1992; Zorlu et  al., 
2008). Moreover, numerous studies have combined ANN 
and other optimization techniques for improving the pre-
dictive accuracy such as genetic algorithm (GA) (Bülbül 
et al., 2022; Chaabene & Nehdi, 2020; Congro et al., 2021; 
Rahami et al., 2008; Vijayakumar & Pannirselvam, 2022) 
and particle swarm optimization (PSO) (Barkhordari et al., 
2022; Chatterjee et al., 2017; Chen et al., 2018; Huang et al., 
2022; Naderpour et al., 2021; Nanda et al., 2014; Nguyen 
et al., 2020, 2023d). However, it is required to transform 
those efficient ML models into practical tools for solving 
engineering problems.

The purpose of this study is to develop an efficient hybrid 
ML model, which combines GA and ANN algorithms for 
improving the LCB prediction of RC driven piles. For this 
purpose, a large database containing 470 field static test 
results is utilized to build the ML models. The performance 
results of GA–ANN are compared to those of the pure ANN 
model (ANN-LM). Three statistical metrics including R2 , 
root RMS , and a20 − index are calculated to evaluate the 
prediction accuracy of those ML models. Furthermore, the 
influence of input variables on the LBC is evaluated using 
Shapley values. Lastly, a graphical user interface (GUI) pro-
gram is constructed to rapidly estimate the LBC of driven 
piles in design practices (Fig. 1).

Database

A significant database is required to train ML models. In this 
study, a set of 470 tested results of driven piles are gathered 
from the literature (Pham & Tran, 2022; Pham et al., 2020). 
The result prediction is the load-bearing capacity ( Pu ), while 
all input parameters of the used database are as follows.

• Diameter of driven pile: D (mm)
• Thickness of the first soil layer where pile embedded: X

1
 

(mm)
• Thickness of the second soil layer where pile embedded: 

X
2
 (mm)

• Thickness of the third soil layer where pile embedded: X
3
 

(mm)
• Elevation of pile top: Xp (mm)
• Elevation of natural ground: Xg (mm)
• Elevation of the extra steel pile segment: Xt (mm)
• Elevation of the pile top: Xm (mm)
• Average SPT blow along the pile shaft: Ns (mm)

• Average SPT blow at the pile tip: Nt (mm)

The histograms of input and output parameters of 470 
data sets are shown in Fig. 2. The statistical properties of 
the data samples are summarized in Table 1. It should be 
noted that this database considered the diameter of the piles 
from 300 to 400 mm, the maximum elevation of the pile tip 
was 16 m, and the maximum average SPT blow along the 
pile shaft was 15.4.

Hybrid GA–ANN model

So far, ANNs have been widely used to resolve different 
civil engineering situations (Nguyen et al., 2021a; Nguyen 
et al., 2021b, c; Tran et al., 2019, 2021; Zorlu et al., 2008). 
An ANN is a computational model inspired by the structure 
and functioning of biological neural networks in the human 
brain. It is a type of machine learning algorithm used for 
various tasks, including classification, regression, pattern 
recognition, and more. Neurons (nodes) are the basic build-
ing blocks of an ANN are artificial neurons, also known as 
nodes. These nodes receive inputs, perform computations, 

Fig. 1  Schematic soil stratigraphy and pile dimensions
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and produce outputs. They are organized into layers. The 
three main types of layers in an ANN are:

• Input layer: The input layer receives the initial input data. 
Each input node represents a feature or attribute of the 
data.

• Hidden layers: Hidden layers are intermediate layers 
between the input and output layers. They perform 
computations on the inputs and pass the results to the 
next layer. ANN models can have multiple hidden lay-
ers, each with varying numbers of neurons.

Fig. 2  Histograms of input 
and output parameters in the 
database
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• Output layer: The output layer produces the final output 
or prediction. The number of nodes in the output layer 
depends on the type of problem being solved. For exam-
ple, for binary classification, there will be one output 
node, whereas for multi-class classification, there will 
be multiple output nodes.

Connections (i.e., weights and biases) between neurons 
represent the strength of the relationship between them. 
Each connection is associated with a weight and a bias, 
which determine the impact of the input on the output of the 
neuron. During training, these weights biases are adjusted to 
optimize the performance of the network. The mathematical 
expressions are shown as follows.

where b
1
,W

1
 , and fh are the vector of biases, the weight 

matrix, and the activation function of the hidden layer, 
respectively. Meanwhile, b

2
,W

2
 , and f

0
 are the biases vector, 

the weight matrix, and the activation function of the hidden 
layer output layer, respectively.

Besides, each neuron applies an activation function to the 
weighted sum of its inputs. The activation function intro-
duces non-linearity into the network, allowing it to model 
complex relationships between inputs and outputs. Com-
mon activation functions include sigmoid, tanh, ReLU, and 

(1)
f ∶ X ∈ RD

→ Y ∈ R1
,

f (X) = f
0

(

b
2
+W

2

(

fh
(

b
1
+W

1
X
)))

,

0 5 10 15 20
Ns

0

50

100

150

200

Fr
eq

ue
nc

y

Histograms
Normal distribution

5 6 7 8 9 10
Nt

0

50

100

150

200

Fr
eq

ue
nc

y

Histograms
Normal distribution

-500 0 500 1000 1500 2000 2500
Pu (kN)

0

20

40

60

80

100

120

140

Fr
eq

ue
nc

y

Histograms
Normal distribution

Fig. 2  (continued)

Table 1  Summary of used 
database

Parameter Unit Min Mean Max SD CoV

D mm 300 363.77 400 48.06 0.13
X1 mm 3.4 3.82 5.72 0.48 0.12
X2 mm 1.5 6.58 8.0 1.63 0.25
X3 mm 0 0.33 1.69 0.45 1.37
Xp mm 0.68 2.80 3.4 0.61 0.22
Xg mm 3.04 3.49 4.12 0.08 0.02
Xt mm 1.03 2.92 4.35 0.60 0.20
Xm mm 8.3 13.53 16.09 1.80 0.13
Ns – 5.6 10.74 15.41 2.26 0.21
Nt – 4.38 7.05 7.75 0.66 0.09
Pu kN 407.2 984.20 1551 352.83 0.36
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SoftMax. In this study, we use tansig and purelin functions 
for hidden and output layers, respectively. These functions 
are expressed by Eqs. (2) and (3).

Moreover, four crucial steps are required in performing 
ANN models.

• Setting hyperparameters: ANN models have various 
hyperparameters that need to be set before training, such 
as the number of layers, number of neurons in each layer, 
learning rate, batch size, and regularization parameters. 
These hyperparameters impact the model’s performance 
and need to be tuned for optimal results.

• Forward propagation: In the forward propagation step, 
the inputs are passed through the network layer by layer, 
and the weighted sum and activation function are applied 
at each neuron. This process continues until the output 
layer produces the final prediction.

• Training (backpropagation): During training, the network 
learns from labeled training data. Backpropagation is 
used to update the weights of the connections by mini-
mizing a loss function. This process involves propagat-
ing the error backward through the network, adjusting 
the weights and biases to reduce the difference between 
predicted and actual outputs.

• Quantifying error: The loss function quantifies the dis-
crepancy between the predicted output and the actual out-
put. It provides a measure of how well the model is per-
forming. Common loss functions include mean squared 
error ( MSE ), categorical cross-entropy, and binary cross-
entropy.

Genetic algorithm (GA) (Holland, 1992) is one of the 
most efficient models in optimizing engineering problems 
(Chou & Ghaboussi, 2001; Kaveh & Kalatjari, 2002; Mar-
asco et al., 2022). Therefore, GA is used for optimizing 
the ANN model for improving its prediction performance. 
GA–ANN is a type of ML algorithm that combines the 
power of ANNs with the optimization capabilities of genetic 
algorithms. In GA–ANN, a genetic algorithm is used to opti-
mize the weights and biases of an artificial neural network, 
which is used to make predictions based on input data. The 
genetic algorithm works by creating a population of poten-
tial solutions, each with its own set of weights and biases. 
The algorithm then evaluates each solution’s fitness, or how 
well it performs on a given task. The fittest solutions are 
then selected for breeding, which involves combining the 
weights and biases of two or more solutions to create a new 

(2)tansig(x) =
2

(1 + epx(−2x))
− 1,

(3)purelin(x) = x.

generation. This process is repeated over multiple genera-
tions, with the hope that the population will eventually con-
verge on a set of weights and biases that result in the best 
possible performance on the given task. In other words, the 
GA–ANN model is an iterative process that involves train-
ing and optimizing the ANN using GA techniques. The goal 
is to find the best set of weights and biases that minimize 
the error or maximize the accuracy of the ANN for a given 
problem. The basic steps to perform the GA–ANN model 
are as follows.

 (1) Define the problem: Identify the problem to be solved 
and the data to be used.

 (2) Build the ANN: Develop an ANN architecture that 
is appropriate for the problem at hand. This includes 
selecting the number of input and output neurons, hid-
den layers, and activation functions.

 (3) Define the fitness function: The fitness function is 
used to evaluate the performance of the ANN. It is 
typically based on a measure of accuracy or error.

 (4) Initialize the GA population: Create an initial popula-
tion of solutions (ANNs) using random weights and 
biases.

 (5) Evaluate the fitness of each solution: Apply the fitness 
function to each solution in the population to deter-
mine its fitness score.

 (6) Select the fittest solutions: Use selection techniques 
(e.g., tournament selection) to choose the fittest solu-
tions from the population.

 (7) Apply genetic operators: Use genetic operators (e.g., 
crossover and mutation) to create new solutions from 
the selected fittest solutions.

 (8) Evaluate the fitness of the new solutions: Apply the 
fitness function to the new solutions to determine their 
fitness scores.

 (9) Repeat steps (6)–(8) until a stopping criterion is met: 
The stopping criterion may be a maximum number of 
iterations, a convergence threshold, or other criteria.

 (10) Select the best solution: Choose the solution with the 
highest fitness score as the final solution.

 (11) Test the final solution: Evaluate the performance of 
the final solution on a separate test set of data to assess 
its generalization ability.

 (12) Tune the model: If necessary, fine-tune the model 
parameters (e.g., learning rate, activation function) 
to further improve performance.

Figure 3 depicts the flowchart of the GA–ANN technique.
In this study, statistical indicators, which are R2 , RMSE , 

and a20 − index were employed to assess the performance 
of the ML model. It should be noted that the R2 is a sta-
tistical concept that measures how well a calculated set 
of data matches an experimental result. In other words, it 



 Asian Journal of Civil Engineering

1 3

evaluates how well the data fit the empirical model being 
used to predict the experiment. The higher the R2 , the 
better is the performance of the predicted model. Mean-
while, RMSE is a commonly used metric to evaluate the 
performance of a regression model. It measures the aver-
age magnitude of the differences between the predicted 
and actual values, providing an indication of how well the 
model’s predictions align with the true values. RMSE is 
often used to evaluate the accuracy of a predictive model, 
such as in regression analysis, and is a measure of how 
well the model fits the data. The lower the RMSE , the bet-
ter the model is at predicting the outcome variable. The 
expressions of R2 and RMSE are described in the following 
equations.

where ti and oi are the actual and predicted results of the i 
sample; N is number of database; o is the mean of calculated 
results.

Results and discussion

Performance of ML model

The converged test of GA–ANN achieved the 3-epoch, and 
the MSE value was 0.035 (very close to zero), as shown in 
Fig. 4. Additionally, predicted regressions of GA–ANN are 
depicted in Fig. 5. It was found that R2 values in training, 
test, validation, and all datasets were 0.99, 0.98, 0.98, and 
0.99, respectively. Furthermore, the linear regression trends 
were very identical with the target line. This result implies 
that GA–ANN predicted LBC of driven piles accurately.

Tables  2 and 3 show the performance metrics ( R2 , 
RMSE , and a20 − index ) and statistical properties of 
the ratio PExp.∕Ppredict of the hybrid GA–ANN and pure 
ANN (i.e., ANN-LM) models. Figure  6 compares the 
results of performance metrics between GA–ANN and 

(5)R2
= 1 −

�

∑n

i=1

�

ti − oi
�2

∑n

i=1

�

ti − o
�2

�

,

(6)RMSE =

√

(

1

n

)

∑n

i=1

(

ti − oi
)2

,

(7)a20 − index =
N20

N
,

Fig. 3  Flowchart for GA–ANN model (Nguyen et al., 2023c)
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ANN-LM models. It is observed that the values of R2 and 
20 − index obtained from GA–ANN were very close to 
unity, significantly higher than those from the ANN-LM 
model. Additionally, RMSE values of the hybrid GA–ANN 
model were approximately one third compared to those of 
ANN-LM model. Moreover, the mean values of the ratio 
PExp.∕PGA−ANN were mostly close to 1.0, whereas that for 
the ratio PExp.∕PANN−LM were larger than 1.3. Once again, 

it can be confirmed that the GA–ANN model outper-
formed the pure ANN model, and the predicted results of 
GA–ANN were highly accurate.

Important features

The Shapley value is a concept from cooperative game 
theory that measures the contribution of each player in a 
cooperative game (Roth, 1988; Winter, 2002). It is used 

Fig. 5  Performance of GA–
ANN model
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Table 2  Performance of GA–
ANN model for load-bearing 
capacity of driven piles

R2 RMSE (kN) a20 index PExp.∕PGA−ANN

Mean SD CoV

All data 0.989 49.464 0.989 1.001 0.053 0.053
Training data 0.990 34.488 1.000 1.003 0.044 0.043
Validation data 0.986 41.521 1.000 1.003 0.043 0.042
Testing data 0.980 94.940 0.983 0.996 0.088 0.087

Table 3  Performance of 
ANN-LM for load-bearing 
capacity of driven piles

R2 RMSE(kN) a20 index PExp∕PANN−LM

Mean SD CoV

All data 0.932 152.864 0.567 1.357 0.125 0.245
Training data 0.919 145.045 0.560 1.356 0.137 0.126
Validation data 0.921 151.237 0.571 1.234 0.134 0.250
Testing data 0.938 156.305 0.501 1.807 0.079 0.185
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in various fields, including economics, political science, 
and machine learning, to assess the importance or contri-
bution of individual players or features. In the context of 
ML, the Shapley value is used to explain the importance 
of input features in predicting the output of a model. It 
helps to understand the contribution and impact of each 
feature on the model’s predictions. By assigning a value to 
each feature, the Shapley value provides a fair allocation 
of importance among the features.

Figure 7 shows important features in calculating the 
LBC of driven piles using the Shapley value method. It 
can be found that the elevation of pile tip ( Xm ), diameter 
of piles ( D ), and the thicknesses of the soil layers where 
pile embedded ( X

1
 and X

2
 ) showed to be the most influ-

ential parameters on the LBC of driven piles. Meanwhile, 
the elevation of natural ground ( Xg ) and the elevation of 
the top pile ( Xp ) had a negative influence on the LBC of 
the pile. Furthermore, the average SPT blow ( Nt ) at the 
tip of piles and the third soil layer where piles embedded 

( X
3
 ) were shown to be less influential on the predicted 

LBC result.
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Practical GUI tool

For applying the ML model in design practices, it is impor-
tant to transform the algorithm into practical tools (e.g., 
equations or GUI). Figure 8 shows the developed GUI pro-
gram for rapidly predicting LBC of driven piles. This GUI 
can be useful for not only designers but also for technical 
managers since it is very easy to use. It should be noted that 
the verification of the algorithm was conducted and pre-
sented in Section “Performance of ML model”; therefore, 
the accuracy of the GUI is confirmed. Additionally, the GUI 
can estimate the LBC within the data provided in Table 1, 
a re-training process should be performed if using datasets 
outside the range.

Conclusions

This study developed the hybrid GA–ANN model for pre-
dicting the axial load-bearing capacity of reinforced con-
crete driven piles. An extensive database including 470 
onsite tests was collected. The performance accuracy of the 
GA–ANN model was evaluated using statistical indicators, 
which are including the goodness of fit ( R2 ), root-mean-
squared error ( RMSE ), a20 − index , and mean value of the 
ratio Pexperiment to Ppredict . The main conclusions are drawn 
as follows.

• GA–ANN model predicts load-bearing capacity of driven 
piles accurately with a very high R2 value of 0.99 and 
small RMSE of 49 kN.

• The elevation of pile tip ( Xm ), diameter of piles ( D ), and 
the thicknesses of the soil layers where pile embedded 

( X
1
 and X

2
 ) showed to be the most influential parameters 

on the LBC of driven piles.
• A practical GUI was developed to rapidly predict LBC 

of driven piles.
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